
1

2

3

4

5

6

7

8

1 0

11
12
13
14
15

16
17
18
19
20
21
22
23

2 4

3536

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Journal of Structural Biology xxx (2010) xxx–xxx

YJSBI 5775 No. of Pages 10, Model 5G

1 April 2010
ARTICLE IN PRESS
Contents lists available at ScienceDirect

Journal of Structural Biology

journal homepage: www.elsevier .com/locate /y jsbi
O
O

FPrediction of protein crystallization outcome using a hybrid method

Frank H. Zucker 1, Christine Stewart 1, Jaclyn dela Rosa, Jessica Kim, Li Zhang, Liren Xiao, Jenni Ross,
Alberto J. Napuli, Natascha Mueller, Lisa J. Castaneda, Stephen R. Nakazawa Hewitt, Tracy L. Arakaki,
Eric T. Larson, Easwara Subramanian, Christophe L.M.J. Verlinde, Erkang Fan, Frederick S. Buckner,
Wesley C. Van Voorhis, Ethan A. Merritt, Wim G.J. Hol *

Medical Structural Genomics of Pathogenic Protozoa (MSGPP), School of Medicine, University of Washington, Seattle, WA 98195-7742, United States

a r t i c l e i n f o
T
E

25
26
27
28
29
30
31
32
Article history:
Received 11 December 2009
Received in revised form 18 March 2010
Accepted 23 March 2010
Available online xxxx

Keywords:
Crystal growth
Protein characterization
Thermal shift assay
Dynamic light scattering
Limited proteolysis
Regression partition tree
U

1047-8477/$ - see front matter � 2010 Published by
doi:10.1016/j.jsb.2010.03.016

Abbreviations: DLS, dynamic light scattering; DS,
ential scanning fluorimetry; HyXG-1, hybrid crystal gr
intensity at 30 �C in DSF; ITm, intensity at the inflect
limited proteolysis; R30, ratio of I30 to ITm; RMT, rat
transition(s) to the total intensity transition in a DSF c
SEC, size-exclusion chromatography.

* Corresponding author. Fax: +1 206 685 7002.
E-mail address: wghol@u.washington.edu (W.G.J. H

1 These authors contributed equally to this work.

Please cite this article in press as: Zucker, F.
doi:10.1016/j.jsb.2010.03.016
D
P
Ra b s t r a c t

The great power of protein crystallography to reveal biological structure is often limited by the tremen-
dous effort required to produce suitable crystals. A hybrid crystal growth predictive model is presented
that combines both experimental and sequence-derived data from target proteins, including novel vari-
ables derived from physico-chemical characterization such as R30, the ratio between a protein’s DSF
intensity at 30 �C and at Tm. This hybrid model is shown to be more powerful than sequence-based pre-
diction alone – and more likely to be useful for prioritizing and directing the efforts of structural genom-
ics and individual structural biology laboratories.

� 2010 Published by Elsevier Inc.
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Detailed knowledge of protein and nucleic acid structures is of
central importance for understanding life at its molecular and
atomic level, and benefits human health by guiding design of ther-
apeutics, vaccines and diagnostics. For decades protein crystallog-
raphy has been the primary technique for obtaining structural
information of biomacromolecules but, despite huge technical ad-
vances, obtaining crystals of good diffraction quality often remains
a major bottleneck. Data from 17 structural genomics projects in
TargetDB indicate that only 13% of soluble proteins yield crystals
suitable for structure determination (Chayen and Saridakis,
2008). Protein crystallization is a complex, relatively poorly under-
stood process driven by many thermodynamic, kinetic, and
stochastic factors (Rupp and Wang, 2004). However, certain prop-
erties of a protein sample that are expected to impact crystalliz-
ability, e.g. homogeneity, solubility, stability and flexibility
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available to most laboratories. Several of these methods, including
dynamic light scattering (DLS) (D’Arcy, 1994), limited proteolysis
(LP) (Gao et al., 2005), differential scanning fluorimetry (DSF)
(Ericsson et al., 2006; Price et al., 2009) and size-exclusion chroma-
tography (SEC) (Price et al., 2009; Graslund et al., 2008) assays
have been suggested singly as predictors of success in crystal
growth. However, there is still considerable scope for improvement
in prediction of crystallization outcome (Rupp, 2003).

The wealth of data capturing the success or failure of crystalli-
zation attempts by large structural genomics efforts has provided a
basis for analyses that attempt to correlate crystallization success
with variables derived from amino acid sequence. Sequence-based
variables such as size, hydrophobicity, and isoelectric point have
long been used to predict solubility (Bertone et al., 2001), which
appears to be inversely related to crystallizability (Price et al.,
2009). In addition, newer algorithms examine additional variables
such as homology to proteins in TargetDB (Slabinski et al., 2007;
Jaroszewski et al., 2008), amino acid composition (Overton et al.,
2008), co-location of amino acids (Chen et al., 2007; Kurgan
et al., 2009), side chain entropy and buried glycines (Price et al.,
2009). Significant limitations of such methods include reduced
accuracy for proteins larger than 200 residues (Chen et al., 2007;
Kurgan et al., 2009), reliance on availability of previously-studied
homologs (Slabinski et al., 2007), or a priori assumptions about
structure (Price et al., 2009). For example, the predictive value of
crystallization outcome using a hybrid method. J. Struct. Biol. (2010),

http://dx.doi.org/10.1016/j.jsb.2010.03.016
mailto:wghol@u.washington.edu
http://www.sciencedirect.com/science/journal/10478477
http://www.elsevier.com/locate/yjsbi
http://dx.doi.org/10.1016/j.jsb.2010.03.016
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homology appears to drop rapidly below 90% sequence identity
(Jaroszewski et al., 2008). This is not surprising, given that changes
to only a few residues may introduce or remove favorable pro-
tein:protein interaction surfaces that stabilize the formation of a
crystal lattice. Indeed, deliberate introduction of small changes in
sequence constitutes an established strategy for addressing diffi-
culty in crystallization (Cooper et al., 2007; Klock et al., 2007). Var-
iation in sequence, position and cleavage of affinity tags is also
widely used to improve crystallization, an effect confirmed in this
study (Supplementary Table 1a, e.g. for targets Cpar071490AAB
and Tbru022584AAA).

A possible further concern is that a disproportionate number of
structural genomics target sequences are derived from prokaryotic
and archeal genomes, which may reduce the predictive power of
TargetDB when applied to predicting the crystallizability of
eukaryotic target proteins. Indeed, a recent sequence-based predic-
tor of crystallization for expressed proteins did not have the same
predictive power for overall success of human proteins (Price et al.,
2009), an observation confirmed by our studies reported below.

Quantitative comparison of existing crystal growth prediction
methods is difficult for several reasons including the fact that the
criteria for judging a prediction as ‘correct’ varies (Price et al.,
2009; Slabinski et al., 2007; Overton et al., 2008; Chen et al.,
2007; Kurgan et al., 2009). In several cases only overall success
from expression to crystal growth is scored [(Slabinski et al.,
2007), PXS–C–Hs in Price et al. (2009)], rather than distinguishing be-
tween success in protein expression and success in crystallization
of purified protein. In the current paper we focus on the latter step.

The hypothesis underlying the current paper is that a more
powerful approach to predicting crystallizability of a given protein
sample is to combine sequence-derived information with multiple
experiments that measure a range of biophysical properties of the
actual sample to be crystallized. The reasoning is that multiple fac-
tors regarding the proteins sample under consideration determine
jointly the success of a crystal growth experiment. Since during
crystal growth protein–protein contacts need to be established,
the nature of the surface of a protein is obviously of special impor-
tance. Hence in addition to the homogeneity and stability of indi-
vidual folded proteins, it makes sense to consider (i) the average
physico-chemical properties of the atoms making up the surface
of the protein, such as charged versus uncharged, hydrophilic ver-
sus hydrophobic, etc.; (ii) the degree of deviations from that aver-
age, e.g. the flexibility of side chains, loops, motifs and domains;
and (iii) the degree of uniformity in the association of the protein
molecules in solution, i.e. whether or not the protein forms well-
defined single chain entities or well-defined multi-chain particles.

Estimates of the nature and flexibility of exposed side chains
can be derived from sequence information provided that a good
prediction of which residues are at the surface can be obtained
(Price et al., 2009). Flexible loops are the subject of several se-
quence-based prediction methods (Price et al., 2009; Slabinski
et al., 2007), while limited proteolysis also gives information about
the dynamics of surface loops (Hubbard, 1998). The mobility of
motifs and domains of a protein with respect to each other is likely
reflected in the accessibility of hydrophobic pockets measured by
fluorescent probes which increase in quantum yield when the
probe is shielded from the solvent, i.e. when the probe interacts
with hydrophobic patches of the protein in DSF assays (Ericsson
et al., 2006). Homogeneity of a protein sample with regards to
aggregation state and impurities can be assessed by combining
information from DLS measurements (D’Arcy, 1994; Niesen et al.,
2008), SDS–PAGE and SEC (Kawate and Gouaux, 2006). These com-
plementary classes of information should be considered together,
as suggested by a survey of SPINE quality assessment data (Geerlof
et al., 2006). Some of the parameters derived from sequence and
from biophysical data might be overlapping. For example, it was
Please cite this article in press as: Zucker, F.H., et al. Prediction of protein
doi:10.1016/j.jsb.2010.03.016
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reported that side chain entropy (SCE) could replace individual
experimental measures of stability for predicting crystallization
of expressed prokaryotic proteins in a recent predictor (Price
et al., 2009). Therefore statistical methods are to be used to dis-
cover the best combination of parameters for optimal prediction
of crystallization results.

We describe here the use of statistical analysis methods to de-
velop a predictor of crystallization and diffraction quality that is
based on several types of biophysical experiments combined with
protein sequence analysis. New variables are derived for several of
the biophysical measurements of protein solutions. The value of
these variables is explored in combination with variables derived
from sequence to find an optimal combination of variables for pre-
dicting the outcome of crystallization experiments. Although we
expect that performance of the prediction model will continue to
improve as larger training sets and additional categories of physi-
cal data are brought to bear, our current best hybrid crystal growth
prediction model, HyXG-1, already demonstrates the power of this
approach. In contrast to previous work (Price et al., 2009), the
resultant hybrid crystal growth prediction method obtained,
HyXG-1, is substantially better than methods based on sequence
alone in predicting outcome for our validation set.
E
D

P2. Methods

2.1. Protein expression and purification

Proteins were prepared by the SGPP consortium (Fan et al., 2008)
(www.sgpp.org) and the MSGPP program project (www.msgpp.org)
using N-terminal His6 tags, NiNTA and size-exclusion chromatogra-
phy as described previously (Mehlin et al., 2006; Arakaki et al.,
2006). SGPP targets (as indicated in Supplementary Table 2) were
cloned using the BG1861 vector giving an uncleavable tag. MSGPP
targets were also cloned using AVA0421 with a cleavable tag. Thus
three tag variants of each target were possible: the 8-residue
uncleavable tag, the 21-residue uncleaved tag, or the 4-residue
cleaved tag. The SGPP procedure for high-throughput soluble
expression screening (Mehlin et al., 2006) was modified for MSGPP
targets (as indicated in Supplementary Table 2) by the replacement
of sonication with freezing at�80 �C and thawing in lysis buffer con-
taining 0.04 g lysozyme, 0.5 g CHAPS, 0.2 g MgCl2(H20)6 and 6 lL
benzonate per 100 ml SGPP buffer (see below) with 30 mM imidaz-
ole. Proteins were stored in SGPP buffer (25 mM HEPES pH 7.25,
500 mM NaCl, 5% Glycerol) except where noted in Supplementary
Table 4 and flash frozen (Deng et al., 2004) before further character-
ization and crystallization.

2.2. Experimental protein characterization

Protein samples were thawed and characterized in the follow-
ing ways.

2.2.1. SDS–PAGE analysis
Samples were flash thawed in 30 �C water bath, DTT was added

to 5 mM and samples were spun at 25,000 g at 4 �C for 30 min prior
to sample dilution. SDS dye with 5% b-mercaptoethanol was added
and samples were boiled at 90 �C for 4 min and then run on 8–16%
Tris–HCl Ready gel (Bio-Rad).

2.2.2. Differential scanning fluorimetry curves
DSF curves were collected using an Opticon 2 real-time PCR

detector (Bio-Rad) to measure the fluorescence of SYPRO Orange
(Sigma) in the presence of protein at 0.5 mg/ml in SGPP buffer with
5 mM DTT in 96-well plates as the temperature increased from 20
or 30 to 90 �C in increments of 0.2 �C. Proteins were centrifuged for
crystallization outcome using a hybrid method. J. Struct. Biol. (2010),

http://www.sgpp.org
http://www.msgpp.org
http://dx.doi.org/10.1016/j.jsb.2010.03.016
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30 min at 25,000g, 4 �C before sample preparation. SYPRO Orange
dye was diluted from initial concentration of ‘‘5000�” to ‘‘2.5�”
in the final sample.

2.2.3. Limited proteolysis
Purified protein at 1 mg/ml in SGPP buffer + 5 mM CaCl2 was

exposed to 20 lg/ml trypsin, chymotrypsin, subtilisin A, or endo-
proteinase Glu-C for 0, 1 and 24 h. After each time period, the reac-
tion was stopped with 0.17 M acetic acid and SDS dye was added.
All samples were boiled and run on SDS–PAGE, gels were then
stained with Coomassie Blue stain.

2.2.4. Dynamic light scattering
Measurements were made using DynaPro light scattering

instrument (Protein Solutions Inc.). All samples were centrifuged
30 min at 4 �C and 25,000g immediately before the experiment in
order to remove possible dust particles and diluted to 5–10 mg/
ml in SGPP buffer + 5 mM DTT. Measurements were performed at
5 and 30 �C readings were taken for each sample.

2.3. Crystallization

Crystallization screening was performed at the Hauptman–
Woodward Institute as previously described (Arakaki et al., 2006;
Luft et al., 2003) and using the JCSG + Suite of screens (QIAGEN).
After rapid thawing samples were centrifuged for 30 min at
25,000g at 4 �C to remove possible precipitate, and kept on ice
afterwards until used in crystallization experiments. Crystalliza-
tion leads from initial screens were optimized for pH, precipitant
and additive concentrations as well as protein concentration and
temperature. MSGPP crystallization trials were set up using a
Phoenix crystallization robot (Art Robbins Instruments) using var-
ious commercially available screens. Each screen was set up at
varying ratios of protein to reservoir volumes. Conditions for the
best-diffracting crystals are shown in Supplementary Table 4.

2.4. Determination of diffraction quality

Suitable crystal cryoprotection solutions were determined as
needed. Typically, a synthetic mother liquor was prepared that
contained an increased amount of precipitants, salts, and/or addi-
tives relative to the crystallization solution, and was then diluted
with varying concentrations of glycerol, ethylene glycol, low
molecular weight polyethylene glycols (MW < 400 Da), or concen-
trated salt solutions. Crystals were subjected to the cryoprotection
solution for varying amounts of time and in some cases had to be
transferred gradually from low to high concentration of the cryo-
protectant. On occasion, oils such as paratone-N, mineral oil, parfin
oil, or mixtures were used for cryoprotection. Following cryopro-
tection (if needed), crystals were mounted in suitably-sized CryoL-
oops (Hampton Research) and flash frozen in liquid nitrogen and
tested for diffraction at 100 K on our home X-ray source (Rigaku
MM007HF, Saturn detector) or on various synchrotron beamlines
(SSRL, ALS, and APS).

2.5. Quantification of experimental and sequence variables

2.5.1. Yield
Expression of soluble protein in high-throughput screens was

evaluated from the staining of protein from the equivalent of
�8% of a 600 lL culture. YldS was scored on a scale from 1, no
detectable soluble protein, to 5, extremely high soluble protein
expression (Supplementary Fig. 2. A score of 5 indicates approxi-
mately 5 lg of protein from 48 lL of cultured cells or more, i.e.
at least 100 mg/L. YldM is the total mass of protein sent from pro-
tein production to crystal screening and growth after large scale
Please cite this article in press as: Zucker, F.H., et al. Prediction of protein
doi:10.1016/j.jsb.2010.03.016
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expression. Large scale expression was carried out using several
different aeration methods and volumes were not consistently re-
corded, so this measure of yield is not normalized for volume of
cell culture.

2.5.2. Size-exclusion chromatography
SEC curves obtained during protein purification were exported

from PrimeView Evaluation (Amersham Pharmacia Biotech) and
analysed using Microsoft Excel and gnuplot (http://gnuplot.source-
forge.net) as described by Kawate and Gouaux (2006). After fitting
a linear background and a single Gaussian to the peak with the
highest absorbance peak (Fig. 1a), we calculated the total residual
Rabs in Excel as Rabs = R|Yobs � Ycalc|/RYobs. We then iteratively fit
additional Gaussians to the largest residual peaks (Fig. 1b and c)
until a plateau in Rabs was reached (Fig. 1d). The Gaussian which
gave maximal improvement in Rabs was taken as the last Gaussian
in the optimal model. SECR1 is Rabs with one Gaussian fit (Fig. 1a).
SECPP is the percent purity of the pooled fractions using the opti-
mal model (Fig. 1b).

2.5.3. SDS–PAGE analysis
Coomassie Blue-stained gels were scored visually on a scale of 1

(lowest purity) to 5 (highest purity); none of the samples scored
below 3.

2.5.4. Differential scanning fluorimetry curves
In theory a protein undergoing a two-state unfolding transition

(folded to unfolded with no stable intermediate states) should pro-
duce a sigmoid fluorescence intensity curve (Ericsson et al., 2006;
Niesen et al., 2007):

I ¼ Imin þ ðImax � IminÞ=ð1þ eðTm�TÞ=Tw Þ

Ideally, the change in intensity with temperature, dI/dT, should be
maximal at Tm, the temperature at which half the protein is un-
folded, also referred to as the melting point (Niesen et al., 2007).
Tw is a measure of the width of the transition, proportional to the
full width at half the maximal dI/dT (FWHM). To derive Tw, we cal-
culated FWHM from the data (see Supplementary Methods) and di-
vided this value by the constant 2*ln[(2 +

p
2)/(2 � p2)] � 3.525.

In practice the intensity curve for most of the samples in our
study followed a sigmoid curve near Tm but deviated in one or
more ways at other temperatures. We therefore used the simple
estimate of Tm as the temperature at (dI/dT)max to avoid depen-
dence on deviations, and quantified the deviations separately.
Deviations included high initial intensity, which we quantified as
R30 (Fig. 2b and d); multiple transitions with increasing intensity,
quantified as RMT (Fig. 2c and Supplementary Fig. 1c, right side);
and a decrease in intensity at high temperature, seen in all sam-
ples. In the cases of samples with multiple transitions, the transi-
tion with the highest dI/dT always had the highest total change
in intensity. We therefore assumed that the major intensity transi-
tion represented the major unfolding step, or at least the step in
which the plurality of hydrophobic pockets were exposed to dye.
We took the midpoint in that major unfolding step as Tm rather
than attempting to fit a single sigmoid curve to data showing a
multi-step transition, or attempting to determine the midpoint of
a multi-step transition.

We quantified minor transitions (Fig. 2c and Supplementary
Fig. 1c, right) as RMT, the fraction of intensity change observed out-
side the major transitions. We fit the above equation to observed
intensities at Tm and Tm � 2Tw to find Imin, estimated the major
transition intensity DImain as 2*(ITm � Imin), and calculated RMT as
the ratio of the remaining intensity change to the intensity of the
major transition (see Supplementary Methods for details). In cases
such as Fig. 2d, the major positive transition was dwarfed by the
crystallization outcome using a hybrid method. J. Struct. Biol. (2010),

http://gnuplot.sourceforge.net
http://gnuplot.sourceforge.net
http://dx.doi.org/10.1016/j.jsb.2010.03.016
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Fig. 1. Analysis of size-exclusion chromatography profiles. Gaussian peaks fit to the SEC curve for Entamoeba histolytica aspartate-tRNA ligase batch 24,058. In (a), (b) and (c)
open black circles are observed absorbance at 280 nm in milli-absorbance units (mAu); vertical dashes bound the fractions pooled for further characterization and
crystallization; red line is calculated mAu using a linear background plus 1, 2 or 3 Gaussian curves fit to the observed mAu using gnuplot. In (b) and (c) dotted lines in blue,
green and violet show individual Gaussians. (A 4th Gaussian, not shown, can be fit as another small curve under the main peak.) (d) Residuals and calculated pool purity for
fitting 1–4 Gaussians to observed mAu. Left axis: solid black circles, total Rabs, the absolute value of the difference between observed and calculated mAu divided by the total
observed mAu; magenta squares, Rabs for the pooled fractions; green triangles, root mean square of the residuals as a fraction of the mean. Right axis: red diamonds, purity of
the pooled fractions i.e. the maximum area under a single Gaussian in the pooled fractions divided by the total pool area. SECR1 is Rabs for one Gaussian: i.e. the area between
the red and black curves in (a) over the area under the black curve. For this sample SECR1 = 0.16. SECPP is the purity of the pooled fractions calculated in the optimal model. For
this sample SECPP = 0.99 from (b). (Figures prepared in the R statistical environment.) (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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imum of 1 while R30 was between 1 and its maximum of 2.

Low-temperature fluorescence was quantified using the inten-
sity at 30 �C since this temperature was consistently included in
the temperature range of DSF experiments performed in our labo-
ratory. We calculated R30 as I30/ITm, the ratio of the intensity at
30 �C to the intensity at Tm (Fig. 2b), with intensity measured in
arbitrary units from the minimum value for each curve. For an
ideal sigmoid curve, ITm would be equal to Imax/2. For real curves,
the intensity decrease at high T made it difficult to directly observe
Imax; ITm was less sensitive to this common deviation from the
ideal. For curves with multiple positive transitions (Fig. 2c, Supple-
mentary Fig. 2c right), using ITm as the denominator to determine
R30 gave similar results in most cases to using the overall positive
intensity change (DItotal). Using ITm resulted in a substantially low-
er R30 compared to using the estimated intensity change of the
main transition (DImain as described above). In all cases, the ratio
using ITm had the strongest correlation with crystallization
outcome.

For curves with overall downward trends (Fig. 2d), any of these
denominators (ITm, Itotal or Imain) would lead to extremely high ra-
tios. Since the intensity was minimal and still dropping at the high-
est temperature used, the values and thus the ratio of I30 and ITm

depended on the highest temperature used. Setting the baseline
Please cite this article in press as: Zucker, F.H., et al. Prediction of protein
doi:10.1016/j.jsb.2010.03.016
to the minimum intensity before Tm would have avoided this ef-
fect. However, the ratio was still so high in all such cases that this
effect did not significantly alter the resulting model or predictions
made using R30. Further, this effect was quantified as a high RMT va-
lue. In pathological cases where the intensity at 30 �C was far
greater than the intensity at Tm, we assigned an arbitrary maxi-
mum value of 2 for R30.

In most cases we had at least two measurements of the sample
in standard buffer. The average of all valid values was used. Curves
with no positive slope above 0.001 raw intensity units per degree
were not included in averaging. This threshold is 0.0002 units
per 0.2� increment, twice the Opticon Monitor’s precision in
reporting intensity of 4 decimal places. One sample had no curves
with any positive slope; this sample was given arbitrary values of 0
for Tm and Tw, 2 for R30 and 1 for RMT.

2.5.5. Limited proteolysis
Each protease was scored visually on a scale of 1–5 (most sta-

ble) according to the criteria in Supplementary Table 3, and the
scores for the 4 proteases were averaged to calculate LPav.

2.5.6. Dynamic light scattering
Hydrodynamic radius (RH), polydispersity, intensity and frac-

tion of mass in each peak were recorded. For each sample a
crystallization outcome using a hybrid method. J. Struct. Biol. (2010),

http://dx.doi.org/10.1016/j.jsb.2010.03.016
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dye vs. temperature, smoothed over 15 points (3 �C) and normalized to the minimum and maximum observed intensities. Blue dashed vertical lines: Tm, the temperature with
the steepest positive slope, (dI/dT)max. Blue horizontal dashes: ITm, the intensity at Tm. (a) Leishmania guyanensis 6-phosphogluconolactonase with ideal shape: low intensity
at low temperature and a single transition. Blue horizontal arrow: temperature range over which the slope is at least ½ of (dI/dT)max i.e. full width at half maximum (FWHM)
of the derivative, proportional to the melting transition width Tw. (b) E. histolytica aspartate-tRNA ligase batch 21,516 with high intensity at low temperature and a single
transition. Red horizontal dashes: I30, intensity at 30 �C. R30 is the ratio of I30 to ITm. Green dot-dash line: I30 threshold based on the R30 criterion in the decision tree, Fig. 3b, i.e.
I30/ITm = 0.105. (c) Toxoplasma gondii porphobilinogen synthase amino acids 320–658, with two distinct transitions. Magenta dotted line: sigmoid curve fit to observed
intensity at Tm and at 2�Tw below Tm. At low temperatures this curve approaches Imin, the estimated starting intensity of the major transition. Since in many cases intensity
decays above Tm, and in others a minor transition is seen above Tm, the amplitude of the major transition is estimated as twice the intensity change between Imin and ITm.
When there is a minor transition below Tm as in this case, Imin is also used as an estimate of the amplitude of that minor transition. RMT, the transition fraction, is calculated as
the amplitude of the minor transition(s) over the total amplitude of all transitions. (d) L. major methionyl-tRNA synthetase, amino acids 206–747, with high R30 and high RMT.
Both I30, red dashes, and Imin from the curve fit to the transition, magenta dots, are near ITm, blue dashes. (Figures prepared in Excel.) (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Rdominant peak was chosen as the consistent peak with the highest
fraction of mass. DLSP was assigned as the polydispersity of that
peak. DLSI was calculated as the intensity of that peak over the to-
tal intensity of that peak and all peaks with larger RH. Smaller
peaks were assumed to be salts and other small molecules. DLSMW

was derived from RH for that peak according to the formula from
the Dynamics Version 5 software: DLSMW = (1.68 � RH)2.3398.
DLSMR is the ratio of DLSMW to the molecular weight of the mono-
mer calculated from the sequence of the expressed protein. An
additional categorical score DLSSC was assigned: 4 (<30% polydis-
persity in a single major peak), 3 (P30% polydispersity in a single
major peak, or 2 (more than one peak, regardless of polydisper-
sity); none of the proteins in this study were in category 1
(unmeasurable).

2.5.7. Sequence variables
We explored a limited set of parameters derived directly from the

protein sequence: MW, calculated molecular weight of the mono-
mer; HYDav, average hydropathy using Kyte and Doolittle values
(1982); Dismax, number of amino acids in the longest contiguous
stretch of disorder predicted by DisEMBL (Linding et al., 2003)
(http://dis.embl.de/); Dis�t, longest stretch of predicted disorder
excluding the N-terminal His tag; and XP, the score of 1–5, optimal
to difficult, from XtalPred, a predictor based on 9 sequence parame-
Please cite this article in press as: Zucker, F.H., et al. Prediction of protein
doi:10.1016/j.jsb.2010.03.016
ters (http://ffas.burnham.org/XtalPred-cgi/xtal.pl) (Slabinski et al.,
2007). Other summary metrics such as PXS and PC–XS–Hs (Price
et al., 2009) were also tested but did not contribute to the predictive
power of the models.

2.6. Statistical analysis

2.6.1. Development of predictive model
Predictive models were constructed and tested in the R statisti-

cal environment (http://www.R-project.org) version 2.8.0. For
recursive regression partition trees, parameters were tuned using
leave-one-out cross-validation on the training set to optimize pre-
dictive power for biophysically valid trees. For SVM, variables were
selected using 10-fold cross-validation on the training set by cycles
of incremental variable addition and automated combinatorial
surveys; parameters were retuned after each round of variable
selection.

2.6.2. Analysis of predictive model
Predictive power for regression models was measured by DSPred

error, the root mean squared error =
p

[R(O–P)2/N] where O and P
are observed and predicted diffraction scores, respectively; by
Pearson’s correlation coefficient, and by area under the ROC curve
of true positive rate versus false positive rate. Since P and O had
crystallization outcome using a hybrid method. J. Struct. Biol. (2010),

http://dis.embl.de/
http://ffas.burnham.org/XtalPred-cgi/xtal.pl
http://www.R-project.org
http://dx.doi.org/10.1016/j.jsb.2010.03.016
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bimodal rather than normal distributions, probability of observed
correlations were estimated using synthetic data. For binary classi-
fications Matthews correlation coefficient, accuracy, sensitivity
and selectivity were also measured. Standard deviations for mea-
sures of predictive power were calculated using cross-validation
results and synthetic data. See Supplementary Methods for further
details on model development and analysis.
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3. Results

3.1. Quantification of experimental and sequence variables

We considered 107 eukaryotic protein samples (Supplementary
Tables 1 and 2, Supplementary Fig. 1) originating from the Struc-
tural Genomics of Pathogenic Protozoa (SGPP; www.sgpp.org)
and Medical Structural Genomics of Pathogenic Protozoa (MSGPP;
www.msgpp.org) pipelines, described in Supplementary Methods.
This sample set includes both widely divergent genes and minor
sequence variations, and represents the full range of diffraction
outcomes, from failure to crystallize to diffraction better than 2 Å
resolution. The full set was divided into a training set of 77 samples
and a test set of 30 samples, such that the two sets contained sim-
ilar distributions of crystallization outcome. The training set con-
tained 41 sequences with less than 90% sequence identity to
each other. Training set samples with similar sequences but dis-
tinct experimental characteristics and outcomes included multiple
batches of the same sequence, tag variants, truncations, and homo-
logs from related organisms. All 30 sequences in the test set had
less than 85% identity to other proteins in either set.

We derived and quantified 21 experimental and sequence vari-
ables based on biophysical characterizations using SDS–PAGE, SEC,
DSF, DLS and LP (Table 1). Novel quantitative measures were devel-
oped for SEC profiles, DSF curves and LP gels as described in Figs. 1
and 2 and Supplementary Table 3. Crystallization outcome, ranging
from 0 to 6, was quantified as diffraction score (DS): no mountable
protein crystals after extensive crystal screening (DS = 0), no dif-
U
N

C
O

R
R

ETable 1
Experimental and sequence variables tested.

Source Variable Description (see Supplementary Method

Protein production YldS Score for soluble expression screening g
YldM Total mass of protein produced (mg)

SDS–PAGE SDS Average of 4 visual scores; reducing con

Limited proteolysis LPav Average of scores for 4 proteases

Size-exclusion chromatography SEChu Visual scoring of chromatogram image
SECR1 Residual (Rabs) with 1 Gaussian fit, as fr
SECPP Percent purity of pooled fractions at pla

Dynamic light scattering DLSP Percent polydispersity
DLSI Percent intensity in major peak
DLSSC Composite score: 4, DLSP 6 30 and DLSI

DLSI < 100
DLSMW MW calculated from hydrodynamic rad
DLSMR MW from hydrodynamic radius/predicte

Differential scanning
fluorimetry

Tm Melting temperature (�C) or 0 if no valid
TW Melting width (�C)
R30 Ratio of intensity at 30 �C to intensity a
RMT Fraction of intensity change in other tra

Sequence analysis MW Predicted molecular weight of monome
Hydav Average hydropathy (GRAVY)

Dismax Longest stretch of disordered residues
Dis�t Longest stretch of disorder excluding N-
XP Score from XtalPred web server

Large, bold variables are those used in partition trees in Table 2.
a Range of possible values.
b Mean (and standard deviation) of values for training set of 77 samples.
c Correlation of training set values to diffraction score.

Please cite this article in press as: Zucker, F.H., et al. Prediction of protein
doi:10.1016/j.jsb.2010.03.016
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fraction (DS = 1), diffraction worse than 10 Å (DS = 2), 10 Å or bet-
ter (DS = 3), 4 Å or better (DS = 4), 2.8 Å or better (DS = 5), or 2.0 Å
or better (DS = 6).

3.2. Development of best predictive model

Many statistical methods can in principle be used to develop
predictive models based on experimental and sequence variables
(Fig. 3a). We evaluated linear regression, naïve Bayesian, several
varieties of support vector machines (SVM), clustering, and recur-
sive regression partition trees as described in Supplementary
Methods. Regression partitioning and SVM gave the best results
in cross-validation tests using only training data (Supplementary
Results). However, regression partitioning gave the best results in
predicting test set diffraction scores of the protein samples and will
therefore be discussed here further.

3.3. Analysis of hybrid experimental characterization and sequence
model

The best partition tree (Fig. 3b, hereafter also called the HyXG-1
tree) obtained from consideration of all 21 variables (Table 1) ap-
plies four experimental and two sequence criteria. Experimental
variables used in the model are: (i) the ratio of intensity at 30 �C
to intensity at the melting point in differential scanning fluorime-
try curves (R30); (ii) soluble protein expression level in high-
throughput screening (YldS); (iii) residual after fitting one Gaussian
to a SEC curve (SECR1); and (iv) ratio of molecular weight from
hydrodynamic radius to calculated weight of the monomer
(DLSMR), while, in addition, sequence variables incorporated into
the model are: (v) calculated monomer molecular weight (MW)
in Daltons; and (vi) number of amino acids in the longest disor-
dered region predicted by DisEMBL (Linding et al., 2003) (Dismax).
The model predicts good diffraction for samples with low MW
(i.e. monomer under 36.3 kDa) and low R30 (i.e. I30/ITm less than
0.105), but poor outcomes for samples with low MW and high
s for full definitions) Rangea Mean (SD)b Correlationc

els 1–5 3.4 (1.0) 0.16
>0 52 (39) 0.18

ditions 1–5 4.4 (0.6) –0.01

1–5 3.3 (0.9) 0.39

1–5 3.4 (1.0) 0.08
action of total area 0–1 0.4 (0.3) �0.11
teau of Rabs 0–1 0.8 (0.2) �0.17

0–100 23 (14) �0.09
0–100 92 (11) 0.05

= 100; 3, DLSP > 30 and DLSI = 100; 2, 2–4 2.6 (0.8) 0.19

ius (kDa) >0 190 (332) �0.01
d monomer MW >0 4 (7) 0.04

melting point 20–90 53 (10) 0.08
P0 7 (3) 0.07

t Tm 0–2 0.4 (0.5) �0.37
nsitions �1 to 1 0.28 (0.24) �0.31

r including tag (Da) >0 49 K (16 K) �0.34
±4.5 �0.32

(0.14)
0.05

P0 19 (9) �0.19
terminal tag P0 8 (8) �0.07

1–5 3.4 (1.3) �0.23

crystallization outcome using a hybrid method. J. Struct. Biol. (2010),

http://www.sgpp.org
http://www.msgpp.org
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Fig. 3. Development of diffraction predictor using experimental results and sequence. (a) Predictive model design. (Top) train the model on experimental and sequence data
and known crystallization outcomes quantified as diffraction scores (DS). (Bottom) use the model to predict DS for new samples from new experimental and sequence data.
(b) Hybrid crystal growth predictor (HyXG-1) decision tree prediction trained on 77 samples: start with experimental and sequence data for a new protein sample (top left);
travel to the right across the tree branching according to criteria shown; arrive at the predicted DS for each category (center). Predicted DS is the mean DS for all training
samples in that category; from top to bottom, there were 9, 7, 10, 14, 7, 12 and 18 training samples in each category. To the right are the percent of all test and training
samples in each category diffracting to at least 10 Å or at least 2.8 Å, and suggestions for actions if no crystals are seen in initial trials. Possible changes include: change
construct tag, tag placement or promoter; change expression host, scale-up volume, aeration method, or time and temperature regime; change purification columns (e.g. add
ion exchange), tag cleavage, lysis and column buffers, or final concentration step.
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R30. Moderate outcomes are predicted for samples with high MW
and very high YldS scores (over 100 mg/L soluble expression in
HT screening). Poor outcomes are predicted for other high MW
samples, with slightly better outcomes for samples with low SECR1

(less than 21.5% of A280 outside a single Gaussian curve) or with
low Dismax (fewer than 19 amino acids in the longest stretch of pre-
dicted disorder) and high DLSMR (MWRH/MWmonomer greater than
1.88).

The predictive power of this HyXG-1 tree was evaluated by
applying the model to the test set of 30 samples (Fig. 4 and Table 2
row A). With success defined as 2.8 Å or better diffraction
(DS P 5), 25 samples (83%) were correctly predicted. With success
defined as better than 10 Å diffraction (DS > 3, dotted line in
Fig. 4a), 26 samples were correctly predicted, 6 as successful, 20 as
unsuccessful. The resulting Matthews correlation coefficient is
0.67; selectivity is high, 20/21 = 95%; sensitivity is moderate, 6/
Please cite this article in press as: Zucker, F.H., et al. Prediction of protein
doi:10.1016/j.jsb.2010.03.016
9 = 67%; and the overall accuracy of the prediction model is high,
26/30 = 87%. For comparison, the highest Matthews correlation
coefficient on our test set using previously reported sequence-only
predictors (Price et al., 2009; Slabinski et al., 2007) was 0.48, with
an accuracy of 60%.

3.4. Relative importance of experimental and sequence variables

In order to test the relative importance of two classes of variables,
those from experimental results and those from sequence analysis,
new decision trees based on only one of the two classes were con-
structed. First, we considered only those variables of one class that
contributed to the best hybrid tree. Next, we constructed trees from
all variables of one class from the full set of 21 variables. In each case
we used the same parameters and training set as for the best hybrid
tree. There is a substantial increase in predictive power of the best
crystallization outcome using a hybrid method. J. Struct. Biol. (2010),

http://dx.doi.org/10.1016/j.jsb.2010.03.016
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Fig. 4. Diffraction score predictions using experimental results and sequence. (a) DS observed vs. DS predicted by the HyXG-1 model shown in (3b) for the test set of 30 new
samples. DS is: 0, no mountable protein crystals after extensive crystal screening; 1, no diffraction; 2, diffraction worse than 10 Å; 3, 10–4.01 Å diffraction; 4, 4.80–2.81 Å
diffraction; 5, 2.80–2.01 Å diffraction; 6, 2.00 Å or better diffraction. Bars: ±1 standard deviation based on the deviation of training DS. Dotted lines and coloring based on
success threshold of better than 10 Å (DS > 3). (b) Receiver operating characteristic (ROC) curves: area under curve is a measure of predictive power. Blue lines, predictions
from combined experimental and sequence data (Table 2, row A); red, predictions leaving out experimental data (row C). Dashes, ROC curve for success threshold of better
than 10 Å (DS > 3); solid, success threshold of 2.8 Å or better (DS P 5). Shading added to visually clarify the association of lines. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Table 2
Effects of experimental and sequence variables on prediction power.

Model Variables used in prediction model DSPred errorf Correlationg ROC areah

Experimental variables Sequence variables DS > 3 DS P 5

A. Best with expt. & seq.a R30 YldS SECR1 DLSMR MW Dismax 1.96
(0.13)

0.56
(0.06)

0.77
(0.04)

0.87
(0.05)

B. Leave out seq. from Ab R30 (YldS) SECR1 DLSMR 2.73
(0.08)

�0.07
(0.06)

0.61
(0.05)

0.49
(0.06)

C. Leave out expt. from Ac MW Dismax 2.46
(0.10)

0.18
(0.07)

0.65
(0.05)

0.69
(0.06)

D. Best with expt. onlyd R30 YldS SECPP
d DLSMW

d LPav
d 1.90

(0.06)
0.57

(0.04)
0.70
(0.08)

0.71
(0.08)

E. Best with seq. onlye MW Dismax Hydav
e XPe 2.58

(0.12)
0.17

(0.08)
0.64
(0.05)

0.63
(0.06)

For descriptions of variables see Table 1.
a Best partition model combining experimental and sequence variables from 77-sample training set.
b The 4 experimental variables from model A were supplied to the partition algorithm. The algorithm discarded YldS as a criterion.
c The 2 sequence variables from A were supplied to the algorithm; the algorithm used both as criteria.
d All experimental variables were supplied. The algorithm used 2 of the same variables as in A, replaced SECR1 and DLSMR with related variables SECPP and DLSMW, and

added LPav.
e All sequence variables were supplied; hydropathy (Hydav) and XtalPred score (XP) were added to the sequence variables used in A.
f Three measures of predictive power for the 30-sample test set (parentheses: standard deviation estimated from synthetic data). Square root of the mean square difference

between predicted and observed diffraction scores (DS).
g Three measures of predictive power for the 30-sample test set (parentheses: standard deviation estimated from synthetic data). Pearson’s correlation coefficient for

predicted and observed DS.
h Three measures of predictive power for the 30-sample test set (parentheses: standard deviation estimated from synthetic data). Area under ROC curves as in Fig. 4b, with

success defined as ‘‘better than 10 Å diffraction” (DS > 3) or as ‘‘2.8 Å or better diffraction” (DS P 5).
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hybrid tree compared to trees without experimental variables
(Fig. 4b and Table 2, row A compared to C or E). For example, the cor-
relation rose from 0.18 (p > 0.16) to 0.56 (p < 0.0014) with the addi-
tion of experimental variables. The improvement in predictive
power is more than twice the estimated standard deviation for pre-
diction error, for correlation and also for the area under the receiver
operating characteristic (ROC) curve with a diffraction score cutoff
of DS P 5 (Fig. 4b). Interestingly, the error and correlation for the
best experiment-only tree (Table 2, row D) were significantly better
than the best sequence-only tree (Table 2, row E).
530

531

532
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534

535
4. Discussion

The HyXG-1 decision tree suggested by recursive regression
partition (Fig. 3b) is consistent with correlations of individual pro-
Please cite this article in press as: Zucker, F.H., et al. Prediction of protein
doi:10.1016/j.jsb.2010.03.016
tein characteristics to crystallization found in previous work (Erics-
son et al., 2006; Price et al., 2009; Slabinski et al., 2007; Kawate and
Gouaux, 2006) and in this study (Table 1). For instance, low initial
intensity followed by a sharp increase on melting in DSF has been
reported as favorable for crystallization (Ericsson et al., 2006). High
fluorescence intensity at 30 �C indicates existence of hydrophobic
pockets, possibly due to flexibility of loops, secondary structure
elements or motifs, in which the fluorophore can bind. Upon
increasing the temperature, unfolding of the environment of these
pockets may lead to increased exposure of the fluorophore to the
surrounding solvent and concomitant decreased fluorescence
intensity. When the temperature is sufficiently high to initiate
unfolding of one or more major domains, an increase in fluores-
cence intensity is observed when new binding sites for the fluoro-
phore become available. Determining the precise mechanism
leading to high R30 is beyond the scope of this paper, but it appears
crystallization outcome using a hybrid method. J. Struct. Biol. (2010),

http://dx.doi.org/10.1016/j.jsb.2010.03.016
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from our analysis that R30 quantifies a property of proteins which is
more significant than the Tm, which might be due to the fact that
R30 reports on features of the target protein at a temperature gen-
erally closer to the conditions of crystallization than Tm.

Though the DSF properties of some proteins are sensitive to buf-
fer conditions (Vedadi et al., 2006), results in our lab (unpublished)
and others (Lavinder et al., 2009; Yeh et al., 2006; Jarvest et al.,
2003) suggest that for many proteins DSF results are consistent
across a variety of buffers and protein concentrations. This may
partially explain why characterization experiments done in one
buffer have considerable power in predicting crystallization, even
though crystallization conditions essentially always differ from
any buffer used to test solution properties of the protein (Supple-
mentary Table 4).

While it is not clear precisely what roles overall protein stability
and local flexibility play in crystallization (Price et al., 2009), low
predicted disorder has been shown to be important for crystallo-
graphic success (Price et al., 2009; Slabinski et al., 2007). High pre-
dicted stability, moderate fraction of predicted loops and no long
stretches of predicted disorder were favorable for crystallization
in one set of mostly prokaryotic proteins (Slabinski et al., 2007).
In another set of proteins, no predictive power was seen for either
experimentally measured overall stability or limited proteolysis
which may monitor loop flexibility, but low predicted disorder
was important for success in crystallizing soluble prokaryotic pro-
teins and also in expressing and crystallizing soluble eukaryotic
proteins (Price et al., 2009). These finding are in agreement with
our results showing that proteins with smaller predicted disor-
dered regions (low Dismax) tend to crystallize better.

Most proteins require relatively pure solutions to crystallize.
Gaussian SEC profiles indicate homogeneous protein solutions, or
at least homogeneity of protein size. In some cases, protein crystal-
lization requires SEC profiles close to Gaussian (Kawate and
Gouaux, 2006). Our measure of SECR1 quantifies the purity of the
protein sample in terms of hydrodynamic radius, which reflects
the homogeneity of monomer or oligomer size and shape. A value
of SECR1 less than 0.215 is incorporated in the partition tree
obtained (Fig. 3b).

Our DLSMR threshold near 2 in the partition tree is consistent
with the finding that dimers and oligomers are favored for crystal-
lization over monomers (Price et al., 2009). Other DLS-derived
variables do not contribute to predictive power, possibly because
the properties they measure were already accounted for by other
variables used in the model. Our samples did not show the strong
negative correlation between multidispersity and well-diffracting
crystals seen in other work (Niesen et al., 2008). The YldS criterion
of the decision tree is consistent with the high success rate ob-
served in our structural genomics work for proteins that express
very well, probably due to the relative ease of selecting highly puri-
fied fractions from purification columns (unpublished results).
Thus for the decision tree from regression partitioning on com-
bined experimental and sequence variables, the criteria are plausi-
ble given the known and expected correlates of those biophysical
properties.

The reason why combined consideration of several variables en-
hances prediction of crystallization outcome is likely due to the
fact that multiple factors play a role in determining the success
in crystal growth. The molecular weight criterion in the predicting
partition tree might reflect that larger proteins tend to contain
multiple domains some of which may have a tendency to be flex-
ible with respect to each other. R30 from DSF experiments likely
indicate a degree of flexibility of loops, motifs and domains. The
symmetry of sizing chromatographic peaks is related to the homo-
geneity of the molecular species in the sample and its state of olig-
omerization. Long stretches of amino acids that are predicted to be
disordered decrease the likelihood of forming regular crystal con-
Please cite this article in press as: Zucker, F.H., et al. Prediction of protein
doi:10.1016/j.jsb.2010.03.016
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tacts. From the results obtained it appears that the well-crystalliz-
ing protein tends to be – in general – one with homogenous
particle size, stable folding at 30 �C, and few flexible domains, mo-
tifs or loops.

The analysis presented here was necessarily limited to protein
samples for which full biophysical characterization data was avail-
able. Despite this relatively small set as compared to the number of
targets available for sequence-only analysis, it is clear that joint
consideration of multiple experimental variables in addition to se-
quence significantly improves prediction of crystallization and dif-
fraction (Table 2), yielding higher accuracy than previously
reported for methods based on sequence alone (Price et al., 2009;
Slabinski et al., 2007; Overton et al., 2008). The improved predic-
tive power gained by joint consideration of multiple experimental
variables stands in contrast to relatively poor correlation with suc-
cess reported for single experimental measures (Price et al., 2009).
It is quite possible that incorporating other experimental methods
such as mass spectroscopy (Jeon et al., 2005), NMR data (Page et al.,
2005) and static light scattering (Wilson, 2003), may further in-
crease the predictive power of hybrid models.

The HyXG-1 hybrid predictor may be most useful in cases
where proteins fail to crystallize on initial setup and the prediction
is strongly positive or negative. The prediction can then help inves-
tigators prioritize their efforts towards an increased likelihood of
success in producing diffracting crystals (Fig. 3b, right side). For in-
stance, if the protein sample prepared has a high R30 and a molec-
ular weight less than 36 kDa, strategies to lower the R30 are likely
to be most effective. This might be achieved in several ways such
as removing flexible termini by limited proteolysis; or by design-
ing, cloning and expressing new truncations of the protein; or by
switching to other species which contain fewer stretches of pre-
dicted disorder; or by replacing flexible segments by shorter link-
ers or by domains of known structure with little disorder.

We are developing a web site which will provide researchers
with tools for assigning standardized quantitative descriptions to
their experimental results, and for using these results to predict
crystallization outcome and prioritize further efforts. Researchers
will be invited to upload sets of protein characterizations and crys-
tallization outcomes to help improve the predictive model by
increasing the number of samples in the training set and adding
new experimental methods to be considered.
5. Conclusion

We have developed a set of novel variables derived from bio-
physical data. Several of these such as R30 and DLSMR appear to
be useful in predicting crystallization outcome. A predictive hybrid
model, combining multiple biophysical characterization and se-
quence-derived data, such as the HyXG-1 decision tree derived
by regression partition (Fig. 3b), is more powerful than sequence-
based prediction alone – and therefore likely to be useful in guid-
ing crystallization efforts.
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