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The Python Macromolecular Library (mmLib) is a software toolkit and library

of routines for the analysis and manipulation of macromolecular structural

models, implemented in the Python programming language. It is accessed via a

layered object-oriented application programming interface, and provides a

range of useful software components for parsing mmCIF, PDB and MTZ ®les, a

library of atomic elements and monomers, an object-oriented data structure

describing biological macromolecules, and an OpenGL molecular viewer. The

mmLib data model is designed to provide easy access to the various levels of

detail needed to implement high-level application programs for macromolecular

crystallography, NMR, modeling and visualization. We describe here the

establishment of mmLib as a collaborative open-source code base, and the use

of mmLib to implement several simple illustrative application programs.

1. Introduction

Structural biologists are both blessed and cursed with a rich assort-

ment of computational tools and visualization programs for manip-

ulating structural models of proteins, nucleic acids and other

biological molecules. The core database of structures upon which

these programs must operate has for many years been the Protein

Data Bank (Bernstein et al., 1977; Berman et al., 2000), and histori-

cally the PDB ®le format (Westbrook & Fitzgerald, 2003) has been by

far the most widespread mechanism for storage and transfer of

structural models within this otherwise very diverse set of tools and

programs. Unfortunately, the PDB ®le format was not designed to

capture the full range of relevant information associated with these

structural models. In particular, it suffers severe limitations as a

representation of the complex network of links, references,

biochemical data and experimental history needed to integrate such a

model fully into a relational database. To address these issues, the

IUCr sponsored development of the mmCIF ®le format and an

associated Dictionary De®nition Language, DDL2. Both the mmCIF

standard and the associated dictionary were released in 1997 after a

long period of design and community input (Bourne et al., 1997;

Fitzgerald et al., 1996). However, to this date very few of the huge

number of programs used routinely by structural biologists have been

re-written to take advantage of this new and richer representation.

Even programs written since 1997 have largely ignored mmCIF. This

is partly due to the understandable desire to retain interoperability

and data exchange with older programs which recognize only PDB

®les, but also to the limited set of programming tools available to

manipulate mmCIF data ®les.

The need for a rich structure description language such as mmCIF

is directly paralleled by a need for rich structural representation

internal to the computer programs used by structural biologists. For

example, a general visualization tool used for molecular modeling

should provide the user with far more than a bare representation of

three-dimensional structure. It should provide mechanisms to pull in

relevant sequence information, homologous structures, biochemical,

genetic and medical data, and thus provide context for interpretation

of the structural model. With both of these needs in mind, we have

undertaken the development of a general library of routines for the

manipulation of macromolecular structural models.

Work on mmLib is complementary to existing efforts elsewhere. A

notable example is the EBI/CCP4 Data Harvesting project (Winn,

1999), which extends programs in the CCP4 suite (Collaborative

Computational Project Number 4, 1994) to emit mmCIF records

capturing statistical and data quality measures from various stages of

crystallographic structure determination and re®nement. These

records are currently kept in parallel to the PDB representation of

the crystallographic model under re®nement. The tools in mmLib

allow programs to carry such information along with the model

description itself, as part of a larger range of possible annotations.

mmLib development is guided by two primary goals. The ®rst goal is

to support extensible and program-independent input/output of

richly annotated structural models. The initial mmLib implementa-

tion reported here supports mmCIF and its associated dictionaries,

but the implementation approach is general enough to handle other

®le formats or direct database access through toolkit extensions. The

second goal is to provide an extensible set of operations which act on

the internal representation of the structural model. Our imple-

mentation is both low-level enough to be ef®cient and powerful

enough to support very high level applications, such as interactive

visualization and molecular modeling. Furthermore, the mmLib

design and its use of Python permit such toolkit extensions without

modi®cation or recompilation of higher level application programs.

2. Implementation

2.1. Overview and current state of the library

We have chosen to implement mmLib in the Python programming

language because of its ¯exibility and dynamic extensibility (van

Rossum & Drake, 2003). Python is becoming the scripting language

of choice in the bioinformatics community, which makes it easy for

mmLib to provide access to the functionality of toolkits developed

elsewhere for sequence analysis and database access (Stajich et al.,
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2002), and for molecular simulations (Hinsen, 2000). Python bindings

are being developed for the next version of the CCP4 program suite

(Collaborative Computational Project Number 4, 1994). Several

crystallographic software packages, including the Computational

Crystallographic Toolbox and Phenix, are being developed as C++/

Python hybrid systems (Grosse-Kunstleve et al., 2002; Adams et al.,

2002). The widely used PyMol (DeLano, 2002) molecular viewer is

also written in Python. Our work on mmLib has bene®ted from

discussions with the developers of these and other projects.

mmLib brings together a range of useful programming modules

into one toolkit. Most of the individual capabilities of mmLib can also

be found in other libraries, but we believe that the integrated design

of the mmLib components provides a signi®cant advantage for

developing extensible application programs that span a wide range of

structural research areas. We are currently using mmLib for

preparation and validation of mmCIF ®les for PDB deposition of

structures determined as part of the structural genomics initiative. We

are also using mmLib as a programming base for visualization

modules to display molecular motions; development of these visua-

lization tools will be reported separately. The initial mmLib imple-

mentation is less complete in other areas such as molecular modeling,

but we hope that application developers in these areas will contribute

to the continuing development of mmLib through the project's

shared code base on SourceForge.

2.2. Python modules

Fig. 1 shows an overview of mmLib's software component layers. It

uses the popular Numeric Python (Ascher et al., 2001) and Scienti®c

Python (Hinsen, 2003) libraries to provide vectors, matrixes, matrix

algorithms and geometric primitives.

2.3. Building applications on top of mmLib

The modules included in mmLib provide a signi®cant portion of

the functionality needed for several classes of macromolecular

applications. The PDB and mmCIF modules can read and write to

and from those ®le formats. Any application which needs to translate,
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Figure 1
Interaction of mmLib modules. The mmLib.PDB and mmLib.mmCIF implement
read/write ®le parsers for the PDB and mmCIF ®le formats. mmLib.Library
implements a basic chemical library, and provides an interface which can be
subclassed to create an alternate chemical library, which we have done in the
mmLib.Extensions.CCP4Library module to retrieve data from the CCP4 monomer
library. mmLib.Structure implements a hierarchical organization of macromole-
cular structures, and mmLib.GLViewer implements an OpenGL viewer for
mmLib.Structure objects.

Figure 2
(a) Structures described by the mmLib.Structure object hierarchy consist of four basic object classes: Structure, Chain, Fragment (and Fragment subclasses
AminoAcidResidue, NucleicAcidResidue), and Atom. Other objects are optionally built into the structural description. Structure objects are the parent objects of the entire
structure, and contain one or more Chain objects. Chain objects contain a list of Fragment objects, and also contain information describing the polymer sequence within the
chain which may a subset of the Fragments within the Chain. Each Fragment object contains a dictionary of its member Atom objects that can be retrieved by the atom's
unique name. If a structure contains multiple models or disordered atoms, the alternate conformations of the logically identical atoms can be retrieved via any atom in the set.
A default model and alternate location ID, set in the top-level Structure object, is used when iterating or accessing Atom objects from any higher-level structural object.
Bond objects link two Atom objects together, creating a graph with Atoms as nodes, and Bonds as edges. Atom objects also contain coordinate, charge, occupancy, and other
atom data described in the structure source ®le description. (b) Example Python source code for accessing the structure as presented in (a). Structure, Chain, Fragment and
Atom classes implement many of the Python list class methods, such as __len__(), __getattr__(), __delitem__(), __contains__(), index(), remove() and sort().

electronic reprint



computer programs

176 Painter and Merritt � mmLib J. Appl. Cryst. (2004). 37, 174±178

edit or inspect ®les can do so through mmLib's Python modules for

those formats, or use the common Structure representation (Fig. 2) of

the data which is independent of ®le format. Calculation of basic

geometric operations such as bond distance, bond angle, torsion

angle, planarity, etc. is provided directly by the mmLib code. More

complex stereochemical operations, such as least-squares model

®tting and extraction of eigenvalues from crystallographic U ij values,

are supported through calls to the linear algebra routines in the

Numeric and Scienti®c Python packages.

2.4. Support for graphics and visualization

Once a structure has been read into a corresponding mmLib

Structure object, it can be visualized using mmLib's built-in OpenGL

molecular viewing component, mmLib.GLViewer. The PyOpenGL

extension to Python provides a single interface for programming with

the OpenGL libraries on any operating system, and mmLib.GL-

Viewer uses this interface to display Structure objects in three

dimensions on any supported platform. Atom drawing properties,

including the color, size, brightness and the drawing style of atoms,

can be modi®ed by subclassing the mmLib.GLViewer component. A

simple viewer illustrating the integration of interaction display into

an mmLib-based application program is provided with the toolkit.

3. File parsers

3.1. PDB

PDB ®le parsers exist in many individual application programs, and

in several biomolecular and scienti®c Python packages. Most of these

parsers interpret only the subset of PDB records relating to atomic

coordinates and connectivity, skipping all other records. This is the

case, for example, for the PDB parsing modules in the current

versions of Scienti®c Python (Hinsen, 2003) and the BioPython

project (Open Bioinformatics Foundation, 2003). In contrast to this,

the mmLib PDB parser de®nes a Python class for each Brookhaven

PDB v2.2 record type. The parser converts each PDB record line into

its corresponding Python object. The PDB record classes are

subclasses of native Python dictionary objects, and the dictionary key

names are taken from the PDB record ®eld names de®ned in the

Brookhaven PDB ®le format document (Westbrook & Fitzgerald,

2003). A customized Python list object contains these PDB record

objects, and provides methods for saving and loading the record list to

and from a PDB ®le. Once a PDB ®le is parsed, record objects can be

added, modi®ed or deleted before being written back to disk as a

PDB ®le. This makes mmLib's PDB parser a useful software

component that is independent from mmLib's structural object

model. It can be used to analyze, edit and clean up existing PDB ®les.

It can also be used, in conjunction with the Python-DBI modules, to

create a bridge between PDB ®les and an SQL database.

3.2. mmCIF

The mmLib.mmCIF module provides a parser for ®les conforming

to mmCIF grammar (Bourne et al., 1997). The mmCIF ®le format is

quite similar in structure to an SQL database; mmCIF ®les are

organized into large labeled data blocks; these data blocks are further

broken down into sections and subsections. The mmCIF sections are

equivalent to SQL tables, and the subsections become column names.

The actual data then become rows within the table. Our mmCIF

parser translates the ®le into a hierarchical object model with the

SQL naming conventions. One possible point of confusion comes

from mmCIF's distinction between a data section de®ning a single set

of values, and a data section de®ning an array, each of whose

elements contains a set of values. By using the SQL-like object model,

we ignore this distinction and pack the single value set into the table

as a single row of data, i.e. an array with one element. When the

parser writes the mmCIF ®le back to disk, this translation is reversed.

mmLib's mmCIF object model is a hierarchy of subclassed Python

lists and dictionaries with additional methods for performing some

primitive SQL-like selections. Any row, table or data block of the

mmCIF data structure can be edited. Tables and rows from multiple

mmCIF ®les can be combined into one mmCIFFile object. The

mmCIFFile object can then be written back to disk as a properly

formatted CIF ®le. The mmCIF parser also contains a modi®ed

version of the basic parser capable of parsing mmCIF dictionary ®les.

A reference implementation of a visual editor for mmCIF ®les is

provided with the mmLib toolkit.

4. Elements and monomers

4.1. Native library of chemical properties

Calculations involving biological macromolecules often require

data for atomic element constants, charge, monomer descriptions and

chemical bonds. The core mmLib source includes a minimal library of

such chemical data for individual elements, amino acids and nucleic

acids. Values can be added or changed by editing the Python ®les, or

by writing a new subclass of mmLib.Library to load monomer

descriptions from a different source.

4.2. External libraries

Applications which require an extended chemical library can do so

by creating a subclass of mmLib's core library. This is done in the

module mmLib.Extensions.CCP4Library to provide access to the

CCP4 monomer library. The CCP4Library module is a good example

of how mmLib's component design can simplify this type of software

development. The CCP4 monomer library is a directory tree of ®les

in mmCIF format, each wrapped by a simple HTML header and

footer. By using the core mmLib.mmCIF parser, the mmLib

CCP4Library module implements dynamic import of the CCP4

monomer library in less than 100 lines of Python.

5. Underlying structural description

A well designed hierarchical data structure for representing biolo-

gical macromolecules needs to serve at least two purposes: it must

contain all the data from the structure description ®le, and it must

provide access methods that simplify otherwise complex program-

ming tasks. Depending on the task at hand, biological macro-

molecules are hierarchically conceptualized as functional assemblies,

molecules, individual polymer chains, folding units (domains),

secondary structure elements, residues, side chains, small molecules,

and atoms. This organizational hierarchy seems easy enough to model

with a parent±child tree, but it turns out to be more dif®cult than one

would expect. Disorder and alternate conformations do not easily ®t

into the tree hierarchy. Functional units such as an active site may be

constituted of residues from distant parts of the linear sequence, and

indeed may span multiple molecules. This presents two challenges.

One is to decide what levels of detail are required for the core

hierarchical description of the macromolecule. The other challenge is

to represent the relationships between individual objects in disparate

parts of the hierarchy, for example residues from two or more

subunits making up a single active site.

electronic reprint



5.1. Implementation

After considering a number of possible data structures, we chose a

structural representation consisting of a series of nested Python list

and dictionary objects. Access methods for Python lists and diction-

aries can be overridden by implementation of their well known class

interface methods, which we have done to add more complex beha-

vior to the native Python types. For example, Chains are specialized

Python lists which store the chemical Fragments and Residues in

order according to their sequence number (and insertion code, if

applicable), so the Chain's Fragment and Residue items are always

correctly ordered. We have also borrowed another useful concept

from Microsoft's Component Object Model (COM) programming

techniques (Williams & Kindel, 1994). Every object in the structure

hierarchy includes functions for retrieving any other object in the

structure. This signi®cantly reduces the number of arguments that

need to be passed when calculations on a particular target object

necessarily depend on references to a larger set of neighboring

objects.

The mmLib.StructureBuilder module automates the complex task

of building a Structure object hierarchy from a list of atoms with

consistent chain, residue and atom identi®ers. The StructureBuilder

class is designed to be subclassed so that the atom list can be created

from a variety of sources.

Some objects in the Structure hierarchy are required, and some are

constructed through algorithmic searches and library lookups. The

Structure, Chain, Fragment and Atom classes are the minimum object

set needed to represent the structure described in a PDB or mmCIF

®le. Other objects may not be needed in all applications. Construction

of Bond objects for standard residues is optional, and is controlled

through an argument list passed to the class which builds the struc-

ture hierarchy.

Structural information that does not ®t within the hierarchical

description is stored in a pseudo-mmCIF database which is also part

of the Structure object. If the source ®le of the structure was an

mmCIF ®le, the tables not used in constructing the structural hier-

archy are copied and added to the associated database. If the source

was instead in PDB ®le format, the PDB records are ®rst translated

into mmCIF using the table of equivalences provided by the RCSB

(Berman et al., 2000).

6. Example applications

We have included several sample applications in the mmLib distri-

bution. These are primarily intended as coding examples, but they are

nevertheless useful in their own right.

6.1. mmCIF input filter

This is a minimal conversion program, essentially two calls to the

mmLib library, that loads an mmCIF ®le into a Structure object and

then outputs it again as a PDB ®le. This simple mmCIF to PDB ®lter

is suf®ciently robust and lightweight to act as a general input stage for

many existing crystallographic programs. It is currently in use as a

front-end ®lter for the Parvati validation server (http://

www.bmsc.washington.edu/parvati), allowing the pre-existing

analysis programs on the site to handle both mmCIF ®les and PDB

®les. There is also a ®lter program to convert a PDB ®le to an mmCIF

®le.

6.2. mmCIF editor

This is a visual editor used to prepare, edit or curate mmCIF ®les

(Fig. 3). It allows easy navigation and viewing of the ®les through

their data blocks, sections and sub-sections. The editor will load

mmCIF dictionaries to provide a detailed help description on any

®eld in the ®le. It also supports ®eld editing in several forms: changing

the value of any section/subsection, adding a new row of data to a

section, adding a new column to a section, and adding a new section.

The editor also allows one to import and merge mmCIF fragments,

such as those output by the CCP4 for data harvesting, into an existing

mmCIF ®le.

6.3. Anisotropy

This example program re-implements portions of the Parvati

server for calculating the distribution of individual atomic anisotropy

in a protein structure (Merritt, 1999). It illustrates the use of simple

mmLib calls to walk through a Structure object and extract some

desired set of properties for statistical analysis. It also illustrates the

power of using the Scienti®c Python library for more complex

mathematical operations, in this case the extraction of eigenvalues

from the crystallographic U ij matrix for each atom.

6.4. Molecular viewer

Although the mmLib.GLViewer module was not intended to be a

complete viewer by itself, we have taken care to design it so it can

easily be integrated into larger applications with graphical user

interfaces (GUIs). GUI applications are programmed using a number

of GUI toolkits on various platforms, and each of these toolkits has

its own API for creating a drawing window for OpenGL. Although

mmLib.GLViewer can create its own windows, it can also draw into

an OpenGL-capable window created by a GUI toolkit. The example

molecular viewer, mmView, included with mmLib uses this technique

to render a structure within the GTK GUI toolkit, a popular toolkit

for building Linux applications. This viewer brings together most of

the components of mmLib in one sample application.
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Figure 3
A screenshot of the mmCIF editor included in the mmLib toolkit. The editor
displays a hierarchical view of the data blocks and dictionary keys on the left, and
the corresponding data values on the right. An mmCIF ®le can be edited without
loading the underlying CIF dictionaries, but if the dictionaries themselves are also
loaded into the editor then they will be used to provide context-sensitive help on
dictionary keys and data entry.
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7. Availability

mmLib is being developed as a collaborative open-source project.

The code base and documentation are currently hosted on Source-

Forge, http://pymmlib.sourceforge.net/. The source code is currently

released under the Artistic License, but it is our intention to be as

¯exible as possible on licensing issues. The components of mmLib

were written so they could easily be used in other Python macro-

molecular projects. We will be happy to donate any part of mmLib to

other projects.

This work was supported by NIH awards GM64655 and GM62617.
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